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Abstract
Superconducting and striped states under lattice distortions are investigated
for high-Tc cuprates based on the quantum variational Monte Carlo method
as the ground state of the two-dimensional (three-band) Hubbard model. We
study the wavefunctions for the correlated condensed states: superconductivity,
antiferromagnetism, inhomogeneity and their coexistent state with on-site
Gutzwiller correlation. The model parameters are chosen for cuprate high-
Tc superconductors such as La1−xSrxCuO4 with x < 0.125. The ground state
has vertical or horizontal hole-rich arrays coexisting with incommensurate
magnetism and superconductivity (SC) in the low-temperature tetragonal (LTT)
phase. We show that the total energy of the inhomogeneous d-wave SC state
with vertical stripes having half-filled holes is lower than that of competing spin-
density wave (SDW) states. The SC order parameter oscillates according to
inhomogeneity in the antiferromagnetic background, and the SC condensation
energy is reduced as the doping rate decreases in the underdoped region. The
decreasing tendency of the SC condensation energy with decreasing doping is
in accord with that of the specific heat data. In the low-temperature orthogonal
(LTO) phase the diagonal stripes are stabilized in the lightly doped region for
less than 5% doping. We also examine the stability of the mixed phase of
LTT–HTT coexisting with stripes.

PACS numbers: 78.20.−e, 78.30.−j, 74.76.Bz

1. Introduction

The electronic properties of oxide high-Tc superconductors have been extensively investigated
over the last decade. The mechanism of superconductivity (SC) has been extensively studied
using various two-dimensional (2D) models of electronic interactions. The 2D three-band
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Hubbard model is the simplest and most fundamental model among such models. The 2D
single-band Hubbard model is regarded as the simplified one of the three-band model. Studies
of these models over the last decade indicated that the d-wave SC may be induced from the
electronic repulsive interaction [4, 22, 23, 34, 37, 39, 40, 49]; significantly it has been shown
that the SC condensation energy and the magnitude of the order parameter are in reasonable
agreement with the experimental results in the optimally doped case [50, 53, 54].

The interplay between magnetism and superconductivity is suggested in the underdoped
region. The reduction of Tc in this region remains unresolved and may be related to
magnetism. The existence of incommensurate correlations with modulation vectors given by
Qs = (π ± 2πδ, π) and Qc = (±4πδ, 0) (or Qs = (π, π ± 2πδ) and Qc = (0,±4πδ)) was
reported by neutron-scattering measurements for the hole-doping rate δ [2, 29, 36, 44–47].
The linear doping dependence of incommensurability in the underdoped region supports a
striped structure and suggests a relationship between magnetism and SC [47]. A relationship
between the SDW, charge-density wave (CDW) orders and crystal structure is also suggested
in intensive studies by the neutron-scattering measurements [17, 19, 24, 44]; in particular in
the low-temperature tetragonal (LTT) and low-temperature less-orthorhombic (LTLO) phases,
the CDW order is stabilized [10], while no well-defined incommensurate CDW peaks were
observed for the orthorhombic systems [19, 24]. In the elastic and inelastic neutron scattering
experiments with La2−xSrxCuO4, the incommensurate magnetic scattering spots around (π , π )
have been observed in the SC phase in the range 0.05 < x < 0.13 [11, 19, 47].

2. Hamiltonian and correlated condensed states

The Hamiltonian for the CuO2 planes contained in oxide superconductors is given by the
three-band Hubbard model,

Hdp = εd

∑
iσ

d
†
iσ diσ + Ud

∑
i

d
†
i↑di↑d

†
i↓di↓ + εp

∑
iσ

(
p
†
i+x̂/2,σ pi+x̂/2,σ + p

†
i+ŷ/2,σ pi+ŷ/2,σ

)
− tpd

∑
iσ

[
d
†
iσ (pi+x̂/2,σ + pi+ŷ/2,σ − pi−x̂/2,σ − pi−ŷ/2,σ ) + h.c.

]
− tpp

∑
iσ

[
p
†
i+ŷ/2,σ pi+x̂/2,σ − p

†
i+ŷ/2,σ pi−x̂/2,σ

−p
†
i−ŷ/2,σ pi+x̂/2,σ + p

†
i−ŷ/2,σ pi−x̂/2,σ + h.c.

]
. (1)

x̂ and ŷ represent unit vectors along the x and y directions, respectively. p
†
i±x̂/2,σ and pi±x̂/2,σ

denote the operators for the p electrons at site Ri ± x̂/2. Similarly p
†
i±ŷ/2,σ and pi±ŷ/2,σ

are defined. Ud denotes the strength of the Coulomb interaction between d electrons. For
simplicity we neglect the Coulomb interaction among p electrons. Other notation is standard
and energies are measured in tpd units. The number of cells is denoted as N for the three-band
Hubbard model. The number of atoms is denoted as Na . In the non-interacting case (Ud = 0)

the Hamiltonian in the k-space is written as

H 0
dp = εd

∑
kσ

d
†
kσ dkσ + εp

∑
kσ

(
p
†
xkσ pxkσ + p

†
ykσpykσ

)
+

∑
kσ

(
2itpd sin(kx/2) d

†
kσ pxkσ + h.c.

)
+

∑
kσ

(
2itpd sin(ky/2) d

†
kσ pykσ + h.c.

)
+

∑
kσ

(−4tpp sin(kx/2) sin(ky/2))
(
p
†
xkσpykσ + h.c.

)
(2)
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Table 1. Typical parameter values for the three-band Hubbard model. Energies are measured
in eV.

Hybertson et al [15] Eskes et al [7] McMohan et al [31] Tjeng et al [43] (Cu2O)

εp − εd 3.6 2.75–3.75 3.5 2.5
tpd 1.3 1.5 1.5 1.47
tpp 0.65 0.65 0.6
Ud 10.5 8.8 9.4 9.7
Up 4.0 6.0 4.7 5.7
Udp 1.2 <1.0 0.8 <1

where dkσ

(
d
†
kσ

)
, pxkσ

(
p
†
xkσ

)
and pykσ

(
p
†
ykσ

)
are operators for the d-, px- and py-electrons of

momentum k and spin σ , respectively.
The parameters of the three-band Hubbard model are given by the Coulomb repulsion

Ud , energy levels of p electrons εp and d electron εd , and transfer between p orbitals given by
tpp. Typical parameter values for the three-band (d–p) Hubbard model are shown in table 1.
In the limit tpd � Ud − (εp − εd), tpd � εp − εd and εp − εd < Ud , the d–p model is mapped
to the t–J model with [59]

J = 4t2
eff

(
1

Ud

+
2

2(εp − εd) + Up

)
(3)

where teff � t2
pd

/
(εp − εd). JK = 4teff gives the antiferromagnetic coupling between the

neighbouring d and p electrons. Since (εp − εd)/tpd is not so large in real materials, the
mapping to the t–J model is not necessarily justified.

The simplified single-band Hubbard model has also been studied intensively with focus
on the d-electrons

H = −
∑
ijσ

tij d
†
iσ djσ + U

∑
i

ndi↑ndi↓ (4)

where ndiσ = d
†
iσ diσ is the number operator.

In the following, let us consider mainly the three-band model. Our wavefunction is a
Gutzwiller-projected function defined as

ψ = PGψ0 (5)

where ψ0 is the one-body wavefunction and PG is the Gutzwiller projection operator given by

PG =
∏
j

[1 − (1 − g)ndj↑ndj↓]. (6)

g is a variational parameter in the range from 0 to unity and j labels a site in the real space.
For the normal state trial function we take ψ0 as the Fermi sea. In constructing variational
wavefunctions with inhomogeneity or without translational invariance, the plane waves are
replaced by solutions of the eigen-equation given by∑

j

H 0
ijσ xλ

jσ = Eλxλ
iσ (7)

where H 0
ijσ is a trial Hamiltonian matrix for spin σ in real space. In evaluating the expectation

values based on Monte Carlo procedures, we can use both the algorithm developed by Ceperley
et al [6] and that employed in the auxiliary field quantum Monte Carlo method [5, 51, 52]
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in actual calculations. When we employ the auxiliary field method, we update the weight
function w = w↑w↓ in the Monte Carlo process [51] where

wσ = det(ϕσ exp(Vσ (u, α)) exp(Vσ (s, α))ϕσ ) (8)

where ϕσ is defined as (ϕσ )jλ = xλ
σj (j = 1, . . . , Na, λ = 1, . . . , Ne/2);Vσ (s, α) is a diagonal

matrix Vσ (s, α) = diag(2aσs1 − α/2, . . . , 2aσsN − α/2, . . .) corresponding to the potential

hσ (s) = 2aσ
∑

i

sindiσ − α

2

∑
i

ndiσ (9)

for the constants α = log(1/g) and a = 1
2 cosh−1(eα/2). The Hubbard–Stratonovich auxiliary

fields si are employed to write the Gutzwiller operator in the bilinear form,

exp

(
−α

∑
i

ndi↑ndi↓

)
=

(
1

2

)N ∑
si=±1

exp

[
2a

∑
i

si(ndi↑ − ndi↓) − α

2

∑
i

(ndi↑ + ndi↓)

]
.

(10)

A superconducting state is expressed by the BCS wavefunction given as

ψBCS = PNe

∏
k

(
uk + vkβ

†
k↑β

†
−k↓

)|0〉 (11)

where β
†
kσ is the creation operator for the mixed band obtained from the diagonalization of the

non-interacting Hamiltonian H 0
dp. β

†
kσ denotes the operator for the highest band in the electron

representation or that for the lowest band in the hole picture. PNe
is a projection operator

which extracts only the states with a fixed total electron (or hole) number Ne. Coefficients uk

and vk appearing only in the ratio are defined by

vk

uk

= 
k

ξk +
√

ξ 2
k + 
2

k

(12)

ξk = εk − µ. (13)


k is a k-dependent gap function. εk is the band dispersion and µ is a variational parameter
working like the chemical potential in the trial wavefunction.

In order to investigate the inhomogeneous wavefunction, we extend the uniform BCS
wavefunction to a non-uniform one. The wavefunction is constructed from the solution of the
Bogoliubov–de Gennes equation given by∑

j

(
H 0

ij↑uλ
j + Fijv

λ
j

) = Eλuλ
i (14)

∑
j

(
F ∗

jiu
λ
j − H 0

ji↓vλ
j

) = Eλvλ
i (15)

where (Hijσ ) and (Fij ) are 3N × 3N matrices including the terms for d, px and py orbitals.
The Bogoliubov operators are written in the form

αλ =
∑

i

(
uλ

i ai↑ + vλ
i a

†
i↓

)
(Eλ > 0) (16)

αλ̄ =
∑

i

(
uλ̄

i ai↑ + vλ̄
i a

†
i↓

)
(Eλ̄ < 0). (17)

aiσ denotes diσ, pi+x̂/2σ or pi+ŷ/2σ corresponding to the components of uλ
i and vλ

i . For the
single-band Hubbard model, aiσ is simply the operator for conduction electrons.
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Then the wavefunction is written as [14, 33, 56]

ψ = PGPNe

∏
λ

αλα
†
λ̄
|0〉 = Const PGPNe

exp


−

∑
ij

(U−1V )ij a
†
i↑a

†
j↓


 |0〉

∝ PG


∑

ij

(U−1V )ij a
†
i↑a

†
j↓




Ne/2

|0〉. (18)

U and V are matrices defined by (V )λj = vλ
j and (U)λj = uλ

j . PG is the Gutzwiller operator.
The spin modulation potential is contained in (Hijσ ) and the SC order parameters 
ij are
included in (Fij ). The second equality in equation (18) is derived as follows. We assume that
the SC state is written in the form

ψ = A exp


∑

ij

φij a
†
i↑a

†
j↓


 |0〉 (19)

for a constant A. Since the SC state satisfies αλψ = 0, we have∑
i

(
uλ

i ai↑ + vλ
i a

†
i↓

)
ψ = 0. (20)

Operating U−1 to this equation, ψ satisfies[
aj↑ +

∑
i

∑
λ

(U−1)jλVλia
†
i↓

]
ψ = 0. (21)

Instead, from equation (19) we can derive(
aj↑ −

∑
i

φjia
†
i↓

)
ψ = 0 (22)

using the anticommutation relation
{
aiσ , a

†
jσ ′

} = δij δσ,σ ′ . Then from equations (21) and (22)
φij is given by

φij = −
∑

λ

(U−1)iλVλj = −(U−1V )ij . (23)

The Monte Carlo algorithm by Ceperley et al [6] is applicable to the wavefunction in
equation (18). The auxiliary field Monte Carlo method is also achieved for the inhomogeneous
SC state introducing the simple electron–hole transformation for the down spin by defining
[58]

a
†
−k↓ = ck. (24)

The operators for up-spin electrons remain the same a
†
−k↑ ≡ a

†
k . Now the pair potential term

Fij is written as the mixing term between c and a electrons. Diagonalizing the matrix H 0
ij ,

the wavefunction ψ ∼ PGϕ is represented by the Slater determinant. Then the Monte Carlo
method can be applied using the formula in equation (8) [52].

The quasi-one-dimensional structures were predicted by mean-field theories [27, 28, 41,
42, 60]; these states are called stripes. The wavefunction with the stripe structure is made
from solutions of the Hartree–Fock Hamiltonian given as

Htrial = H 0
dp +

∑
iσ

[δndi − σ(−1)xi+yi mi]d
†
iσ diσ (25)
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T

C/T
Entropy
balance

Tc

Figure 1. Due to the entropy balance the two parts indicated by arrows have the same area.

where we have variational parameters ε̃p and ε̃d in H 0
pd . In this paper δndi and mi are

assumed to have the form [12, 30, 55]: δndi = − ∑
j α/ cosh

((
xi − xstr

j

))
and mi =


inc
∏

j tanh
((

xi − xstr
j

))
with parameters α and 
inc, where xstr

j denote the position of a
stripe. The copper-centre striped states are investigated in this paper. The inclusion of
stripe order parameters considerably improves the ground state energy. In small clusters,
the deviation of the energy of the striped state from the exact value is within several per
cent for the Hubbard model [57]. The SC gap parameters 
ij are included in (Fij ). We
assume the following spatial variation for the SC order parameters in the d-electron part:

i,i+x̂ = 
s cos(Qx(xi + x̂/2)),
i,i+ŷ = −
scos(Qxxi), where Qx = 2πδ (δ is the hole
density). The SC order parameter oscillates according to the spin and charge distributions so
that the amplitude has a maximum in the hole-rich region and is suppressed in the hole-poor
region.

3. Superconducting condensation energy

The superconducting condensation energy is given by the difference of free energy between
the normal and SC states:


ESC = n − s =
∫ Tc

0
(Sn − Ss) dT (26)

for the constant volume dV = 0. The entropy difference 
S(T ) ≡ Sn − Ss is written as


S(T ) =
∫ T

0

d(
Q)

T
(27)

for the heat transfer d(
Q). If we assume that d(
Q) = (Cn − Cs) dT , using the partial
integration, the SC condensation energy is estimated from the relation given as


ESC =
∫ Tc

0
(Cs − Cn) dT (28)

where we use the entropy balance relation at Tc: Sn(Tc) = Ss(Tc) (figure 1). From the
specific heat reported by Loram et al [25], the condensation energy was obtained as 0.17–
0.26 meV/(Cu site) by numerically integrating the SC specific heat minus the normal state
one with respect to temperature from zero to Tc [1, 49].

In the limit Ud → 0,
ESC is extremely small showing an exponential dependence on
Ud since 
s is given as [22, 23]


s ∝ exp
(−2

/(
xU 2

d

))
(29)
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0 4 8 12 16

∆

U

QVMC

U2 TheoryU3 (RPA)

RPA

Figure 2. 
 as a function of U for the single-band Hubbard model. The energy unit is the
nearest neighbour transfer integral t. The curve by U2 theory indicates the results obtained from
the lowest order perturbation theory. U3(RPA) means that we consider the terms up to the third
order of U without vertex terms. Solid circles indicate the results obtained by the variational
Monte Carlo method [37, 49] based on the Gutzwiller function. Open circle is estimated by the
improved wavefunction with the off-diagonal Jastrow correlation factor [51, 52].

for a constant x. The U-dependence of the SC gap 
s for the single-band Hubbard model is
shown in figure 2. 
s shows the exponential behaviour for small U changing into a constant
for the intermediate U. For large U it may show 1/U dependence: 
s ∼ 1/U as expected
from a mapping to the t–J model with J ∝ 1/U . It is suggested from figure 2 that the SC
evolves from small U continuously to the intermediate region of U.

For the intermediate Coulomb interaction Ud , the more reliable numerical method, VMC,
is used in this paper. It is not an easy task to estimate the SC condensation energy in the large
systems. In the study of the ladder model [20, 38, 48], the bulk limit was first evaluated by
VMC [21]. The ground state energy

Eg = 〈H 〉 = 〈ψ |H |ψ〉/〈ψ |ψ〉 (30)

is obtained using the Monte Carlo procedure. We optimized Eg with respect to variational
parameters. The energy gain due to the SC gap formation, i.e. the SC condensation energy,
was estimated from the difference between the minimum Eg(
s,opt) with 
s optimized and
the normal state value Eg(
s = 0):


ESC = Eg(
s = 0) − Eg(
s,opt). (31)

In figure 3, the size dependence of the SC condensation energy is shown for the uniform
SC in the overdoped region and the striped SC in the underdoped region with the results
obtained for the 2D one-band Hubbard model for comparison. The parameters are tpp = 0.4
and Ud = 8 in tpd units. The squares in figure 3 indicate the SC condensation energy of the
pure d-wave state at δ ≈ 0.2, while the circles are for SC coexisting with stripes at δ = 1/8
for Qx = π/4 evaluated on rectangular lattices 32 × 8, 24 × 6, 16 × 8 and 16 × 4. In both
cases the energy obtained through an extrapolation is of the same order as the experimental
values.


ESC ≈ 0.00014tpd ≈ 0.2 meV (32)

where we assigned tpd ≈ 1.5 eV suggested from cluster calculations [7, 31]. In figure 4 we
show the SC condensation energy as a function of the hole density. Solid circles indicate the
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0

0.001

0.002

0.003

0.004

0 0.005 0.01

∆ E
/N

1/Na

Figure 3. SC condensation energy per site as a function of 1/Na in t units where t ≈ tpd/3 and Na

is the number of atoms. Squares are for δ ≈ 0.2, tpp/tpd = 0.4 and Ud/tpd = 8 for the three-band
model on square lattices. Circles are at δ = 1/8 coexisting with stripes for tpp/tpd = 0.4 and
Ud/tpd = 8 on rectangular lattices 32 × 8, 24 × 6, 16 × 8 and 16 × 4. Triangles are for the
single-band Hubbard model; δ = 0.86 and t ′ = −0.2 and U = 8 for solid symbols and δ = 0.84
and t ′ = −0.15 for open symbols (where energy unit is t and t ′ is the next nearest neighbour
transfer) [50]. The diamond shows the value indicated from experiments.

0

0.0001

0.0002

0 0.1 0.2 0.3

∆E
/N

Hole density

Figure 4. SC condensation energy per site versus the hole density in tpd units, where the parameters
are tpp = 0.4 and Ud = 8. Solid circles and open circles indicate the SC condensation energy for
the uniform SC and striped SC, respectively. The lines are fitted by parabolas. Squares are obtained
for the single-band Hubbard model with the next nearest transfer t ′/t = −0.2 on a 12 × 12 lattice
[33].

results for the Gutzwiller function without long-range order and open circles show the results
for the striped Gutzwiller function, respectively. The SC condensation energy per site for the
striped SC is reduced as the hole density decreases, while that for pure d-wave SC remains
finite even near half-filling. Since the striped SC has lower energy than the d-wave SC in
the underdoped region, the SC condensation energy decreases as the hole density decreases
in the ground state. The decreasing tendency of the SC condensation energy was reported
from the specific heat measurements [26, 35]. This suggests that an origin of the decrease of
Tc in the underdoped region simply lies in the reduction of hole-rich domain, where the SC
order parameter has finite amplitude. In our evaluations the half-filled striped state is stable
around 1/8-hole doping.
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(a)
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-+ +

Cu O

+

- +

-

(b)

Figure 5. Lattice structures in the LTT phase (a) and LTO phase (b). The symbol ‘+’ means that
the oxygen atoms move up and ‘−’ means that the oxygen atoms move down. Large ‘+’ and ‘−’
indicate large displacements. ‘O’ denotes the oxygen atom.

4. Stripes and lattice distortions

Now let us turn to consider the effect of lattice distortion on stripes. In the LTT phase
stabilized at low temperatures near 1/8-hole filling, the distortions of the CuO square occur
in the manner shown in figure 5 where the ‘+’ oxygen moves up, the ‘−’ oxygen moves down
and the oxygen left blank remain in the same position. The LTT phase has a ‘tilting axis’ on
which the copper and oxygen atoms never move even in the distorted state [3]. In figure 5(a)
there is the vertical tilting axis. The vertical or horizontal stripes can coexist with the lattice
distortions in the LTT phase.

Let us investigate the lattice distortions in the following Hamiltonian

H 0
pd = εd

∑
iσ

d
†
iσ diσ + εp

∑
iσ

(
p
†
i+x̂/2,σ pi+x̂/2,σ + p

†
i+ŷ/2,σ pi+ŷ/2,σ

)
+ tpd

∑
iσ

[
d
†
iσ

(
pi+x̂/2,σ + pi+ŷ/2,σ − pi−x̂/2,σ − pi−ŷ/2,σ

)
+ h.c.

]
+ tpp

∑
iσ

(1 + vi)
[
p
†
i+ŷ/2,σ pi+x̂/2,σ − p

†
i+ŷ/2,σ pi−x̂/2,σ − p

†
i−ŷ/2,σ pi+x̂/2,σ

+ p
†
i−ŷ/2,σ pi−x̂/2,σ + h.c.

]
+ tpd

∑
iσ

[
uix̂d

†
iσ pi+x̂/2,σ − ui,−x̂d

†
iσ pi−x̂/2,σ

+ uiŷd
†
iσ pi+ŷ/2,σ − ui,−ŷd

†
iσ pi−ŷ/2,σ + h.c.

]
(33)

where uiµ̂ and vi represent the variations of the transfer energy tpd and tpp, respectively. We
examine a transition from the LTO to the LTT phase; the case uiµ̂ = 0 and vi = 0 corresponds
to the LTO phase. We neglect the anisotropy of tpp in the LTO phase for simplicity. The
LTT structure is realized by rotation around the fixed axis parallel to the x- or y-axis from
the LTO lattice, while the HTT structure occurs through rotation around the diagonal axis
from LTO. Here HTT means the normal lattice without distortions called high-temperature
tetragonal (HTT) structure. We simply assume the same elastic energy cost for these two types
of rotations.

The structural transition from low-temperature orthorhombic (LTO) to LTT phases has
been reported in LaBaSrCuO and LaNdSrCuO systems [17]. We consider the following cases
assuming that the stripes are in the y-direction:

(A) uix̂ = u, uiŷ = 0, vi = 0,
(B) uix̂ = 0, uiŷ = u, vi = 0,
(C) uix̂ = u, uiŷ = u cos(2Qxxi), vi = u cos(2Qxxi),
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-0.1

0

0.1

0.2

0 0.02 0.04 0.06 0.08 0.1

(C)
(B)
(A)

∆E
/N

u

Figure 6. Energy gain 
E = E(u = 0) − E(u) (u = δtpd/tpd ) per site as a function of transfer
deformation u in tpd units. The parameters are tpp = 0.4 and Ud = 8 for a 16 × 4 lattice. The
hole-rich stripes are in the y-direction. The energy gains for (A) uiŷ = 0 (triangles), (B) uix̂ = 0,
(open circles) and (C) (solid circles) are shown. The elastic energy Ku2/2 is shown by the dashed
line (for K = 5 and K = 10). The summations of 
E = E(u = 0) − E(u) and the elastic energy
per site are also shown for the case (C). The Monte Carlo statistical errors are smaller than the size
of the symbols.

where Qx = 2πδ, u is the amplitude of deformation of tpd and tpp, and uiµ̂ = ui,−µ̂ are
assumed. u = 0 corresponds to the LTO structure, and the anisotropy in tpd indicates a
transition to the LTT phase. tpd increases along the tilt axis compared to the LTO phase. The
stripes are perpendicular to the tilting axis in the case (A) and parallel in the case (B). The
case (C) corresponds to the structure of the mixed LTT–HTT phase. The energy gain per site
defined as 
E/N = (E(u = 0) − E(u))/N is presented in figure 6 as a function of u in tpd

units. As shown in the figure, the energy in case (B) is lower than that in case (A) indicating
that the stripes are parallel to the tilting axis under the rigid LTT structure [18]. This is simply
because the kinetic energy gain in the parallel striped state in case (B) dominates over that
in the perpendicular striped state in case (A). The cost of energy due to lattice distortions is
assumed to be given by (K/2)u2 for the constant K, which is estimated in the following way.
According to Harrison’s rule [13], tpd is expected to vary as d−n with n ≈ 7/2, d being the
Cu–O bond length. Since δtpd/tpd = −nδd/d, the elastic energy is estimated as

Eel = 1

2
C(2d)3

(
δd

d

)2

= 1

2
C(2d)3 1

n2
u2 ≡ K

2
u2. (34)

The constant C is estimated as C ≈ 1.7×1012 dyn/cm2 = 1.7 eV Å
−3

[32]. Since d ≈ 2 Å,K

is of the order of 10 eV: K ≈ 8.9 eV. The energy is lowered further in case (C) where the
softening of the tilt angle is taken into account. We show schematically the stable striped state
in the LTT phase in figure 7 obtained from our VMC evaluations, where the shaded square
represents the tilted CuO unit cell rotating around the tilting axis. The tilt angle is reduced in
the hole-rich region called HTT in this paper. The LTT–HTT state is more stabilized due to
the kinetic energy gain coming from the softening of tilt angles.

Let us discuss the other type of stripes called diagonal stripes where there are hole arrays
in the diagonal direction. In VMC calculations, the vertical striped state always has slightly
lower energy than the diagonal stripe state on the lattice without distortions in contrast to the
mean field results [16]. The diagonal stripes were shown to be stable at low doping within
the dynamical mean field theory, giving a cross over from diagonal stripes in the low doping
regime to the vertical stripes at doping higher than 0.05 [8, 9]. Here we propose a scenario that



Lattice distortions and stripes in the underdoped region of high-Tc cuprates 9347

(a) (b)

Hole-rich region Hole-poor region

Figure 7. Schematic structure of lattice distortions and stripes where the hole-rich arrays are
perpendicular to the tilting axis in (a) and parallel to that in (b). We call the state in (a) the
LTT–HTT mixed phase. The shaded square represents a distorted CuO unit cell. In the hole-rich
HTT region the tilt angle is reduced.
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Figure 8. Energy as a function of transfer deformation u for the diagonal and vertical stripes in
the LTO phase. The doping rate is 0.033%, and the parameters are given by tpp = 0.4, Ud = 8
and εp − εd = 2 in tpd units. The lattice size is 16 × 15.

the anisotropy of transfer energy tpp in the LTO phase will stabilize the diagonal stripes. In
the LTO structure the transfer tpd is reduced as tpd(1 − u), tpp in one direction is also reduced
as tpp(1 −u), while tpp in the other direction remains the same compared to the normal lattice
(HTT). In figure 8 we compare the energy as a function of u for the diagonal and vertical
stripes on a 16 × 15 lattice. The doping ratio is given by 0.033 corresponding to the lightly
doped region. The diagonal striped state has lower energy than the vertical state after level
crossing due to the increase of transfer deformation. This supports our scenario concerning
the stability of diagonal stripes. With respect to SC, our preliminary calculations indicate the
impossibility of coexistence of SC and diagonal stripes. In table 2 we summarize the possible
spin structure versus hole-doping rate.

5. Summary

In this paper we have investigated the superconducting and inhomogeneous ground state
under the lattice distortions based on the three-band model of high-Tc cuprates using the
variational Monte Carlo method. We have studied the correlated states with superconducting
and striped antiferromagnetic orders. The inclusion of striped order improves the wavefunction
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Table 2. Possible spin structures versus hole-doping rate. The coexisting SC state is also shown,
where IC indicates the spatially varied SC order parameter and U means uniform pure d-wave SC.
‘(Vertical)’ indicates that the energies of striped and AF states are almost degenerate.

Lattice Lightly Under Optimally Overdoped

LTT Vertical Vertical (Vertical) Commensurate
d-wave (IC) d-wave (IC) d-wave d-wave (U)

LTO Diagonal Vertical (Vertical) Commensurate
non SC d-wave (IC) d-wave d-wave (U)

considerably. The decreasing tendency of the SC condensation energy, reported from the
specific-heat measurements, is suggested as a result of the reduction of the SC domain in the
hole-rich region. The vertical or horizontal stripes are stabilized under the LTT distortion
as a cooperative phenomenon of electrons and lattice. An oscillation of the tilt angle is also
considered to get the energy gain of doped holes along the stripes. The softening of tilt angles
occurs in the hole-rich region, from which we have pointed out a possibility that the stable
striped state has hole-rich arrays perpendicular to the tilting axis of the lattice distortions in
the LTT phase as shown in figure 7 that can be regarded as the LTT–HTT mixed phase.
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